

Beyond the Battlefield

Adapting a technology stream to ever-evolving console platforms, game designs, and opposing game genres.

Graham Wihlidal, Sr. Rendering Engineer - Frostbite

Graham Wihlidal

- Senior Rendering Engineer for Frostbite
- Previously at BioWare for almost a decade
- Specialist in:
 - Engine architecture
 - Low level optimizations
 - Graphics and console hardware
 - GPU driver implementation
- Author of Game Engine Toolset Development

Introduction

- Frostbite 2 was originally built for Battlefield 3 internal at DICE
- Other teams at EA started to express interest in using Frostbite
- Prior to Battlefield 4 launch:
 - Engine was transitioned for next gen consoles
 - Frostbite 3
 - Frostbite became its own team within EA
 - No longer internal to DICE
- Frostbite 3 now used by most teams at EA!
 - Many different game genres...

Gen4 Challenges: Battlefield 4

- Extensive PS3\360 code to migrate (i.e. SPU jobs)
- Cross generational! (5 platforms)
- Console launch title development was 'interesting'
 - Early adoption is always a bumpy road
 - Part of the fun!
 - Uncharted territory
 - Creative problem solving

Gen4 Challenges: Battlefield 4

- Larger asset sizes and in greater quantities
 - i.e. BC7 compression times, photogrammetry, more draw calls, etc.
 - We had some systems buckle a bit under the exponential growth
 - i.e. Content and build pipelines in some areas
 - See: <u>Scaling the Pipeline</u>

Gen4 Challenges: The Good

- Frostbite was already 64 bit from PC
- Already had an optimized Direct3D 11 renderer
 - Many engines still on Direct3D 9 & 10 at this time
- Architecture already supported multiple platforms
- Most systems already designed with scalability and parallelism
- New consoles are effectively PC platforms
 - x86 64bit
 - Same GPU\CPU vendor for both (AMD)
 - Great support from first party (Microsoft and Sony)

Gen4 Challenges: The Bad

- Battlefield 3 was 30fps, Battlefield 4 needed to be 60fps
 - A huge undertaking to optimize for
- Gameplay systems were a problem
 - Was single threaded in many places -> had to jobify
 - CPU code is at best 2-3x faster than PS3\360
 - While GPU is about 8x faster
 - Some cases we have measured 2x slower!!
- Console platforms and tool chains were immature
 - Shader compiler bugs
 - Iteration time was very low
 - First party systems available last minute

Gen4 Challenges: The Bad

- Rendering systems also had some challenges
 - Increased asset counts
 - CPU didn't scale up as much as GPU did.
 - Cross generational scaling (gen3 to gen4 to pc)
- Had to implement very complex systems in short time
 - Memory manager
 - Had OS bugs like two virtual addresses pointing to same physical address...
 - Job scheduling
 - New rendering backends (GNM, D3D11.x)

Current Challenges

- Rendering has progressed into physically based (PBR)
 - Frostbite has done a MAJOR push to revamp our rendering
 - See: <u>SIGGRAPH: Moving Frostbite to PBR</u>
 - See: SIGGRAPH: Unified Volumetrics
 - See: <u>SIGGRAPH</u>: <u>Stochastic Screen-Space Reflections</u>
- Upcoming games want to render much more!
 - 6x more draw calls
 - Frostbite 3 was already efficient at scaling (needed for Battlefield)
 - Linear cost for Pre PBR and PS3\360
 - Well defined problems and approximations
 - Exponential cost for PBR, new rendering systems and PS4\XB1
 - Cutting edge research

Physically Based Rendering

Displacement Mapping

Unified Volumetrics

Screen Space Reflections

Current Challenges

- Result: Beautiful looking games!
- Result: Unhappy performance!
- The key factor is scalability
 - Increased asset counts and cost
 - [CPU] rendering systems
 - [CPU] submission to GPU
 - [GPU] rendering passes

Improving Scalability

- Major optimization efforts ongoing at engine and game level
 - Shaders (Algorithms and Shader Compilers)
 - Passes (Reduction and Simplification)
 - Improvements to Culling, Occlusion, and Shadow Map Generation
 - Sensitive to asset counts
 - Reducing overhead (Proxy meshes, improved cache coherency, etc.)
 - Further optimized our already efficient systems
 - See: <u>Culling the Battlefield</u>
 - GPU driven rendering pipelines

Improving Scalability

- Have already made significant optimizations and improvements
 - Still need to squeeze a bit more performance, though...

Improving Scalability

- Have to look at full rendering stack to get the big picture
 - This includes the graphics APIs and drivers!
- PS4 is very low level
 - Improvements here are on the developers, instead of Sony
 - Our backend is already very efficient, but can always be more optimal
 - We have high level information and knowledge
 - Easier to write a "driver" that favors patterns in our engine and games
 - Unlike PC drivers (which includes XB1 DX11)

- Direct3D 11
 - High amount of CPU overhead due to a number of reasons
 - Lack of high level engine knowledge\context
 - Extensive validation of inputs to protect developers
 - Robustness over performance
 - Many unnecessary flushes and cache invalidation
 - Very inefficient parallelism

- Direct3D 11
 - Architecture does not easily allow for GPU extensions
 - Limit engines from taking advantage of new hardware features
- Windows OpenGL Similar Story (though a bit better)
- Apple OpenGL Don't even go there...

- Frostbite has been pushing IHVs, Microsoft, and Khronos for years to give AAA developers something better!
 - They didn't think we could handle a low level API
 - GPUs are complex and with many nuances
 - PS4 gave us the opportunity to truly prove our competence
- In collaboration with AMD, Frostbite helped pioneer Mantle
 - Extremely successful because the results kicked the industry into gear

DirectX 12

DIRECTX® 12 SOC PERFORMANCE/WATT 3DMARK® API OVERHEAD FEATURE TEST

AMD

- CPU parallelism is not the only goal!
- Current GPUs support parallelism
 - Known as "Asynchronous Compute"
 - Allows for new performance tricks
 - Legacy APIs serialized potential graphics parallelism
 - i.e. Graphics -> Compute -> Graphics
 - Supported on PS4, Vulkan, DX12, Mantle
 - We now overlap compute with graphics when possible
- We have moved a lot of our GPU work to async compute
 - We want to use it wherever there is a performance win

Frame is TWO milliseconds shorter however!

Summary

- Frostbite has evolved significantly over the past decade
- Game team adoption has grown exponentially
- No longer developing tech for a single genre
- Architectures need to be able to scale linearly
- New consoles allow us to raise the bar on fidelity
- Important to develop flexible software
- Aim for full parallelism on CPU, but also GPU!
 - Upcoming graphics APIs let us optimize the whole stack

Thank You!

Questions?

graham@frostbite.com