

Beyond the Battlefield

Graham Wihlidal, Sr. Rendering Engineer - Frostbite

Adapting a technology stream to ever-evolving console
platforms, game designs, and opposing game genres.

Graham Wihlidal

•  Senior Rendering Engineer for Frostbite
•  Previously at BioWare for almost a decade
•  Specialist in:

–  Engine architecture
–  Low level optimizations
–  Graphics and console hardware
–  GPU driver implementation

•  Author of Game Engine Toolset Development

Introduction

•  Frostbite 2 was originally built for Battlefield 3 internal at DICE
•  Other teams at EA started to express interest in using Frostbite
•  Prior to Battlefield 4 launch:

–  Engine was transitioned for next gen consoles
•  Frostbite 3

–  Frostbite became its own team within EA
•  No longer internal to DICE

•  Frostbite 3 now used by most teams at EA!
–  Many different game genres…

Gen4 Challenges: Battlefield 4

•  Extensive PS3\360 code to migrate (i.e. SPU jobs)
•  Cross generational! (5 platforms)
•  Console launch title development was ‘interesting’

–  Early adoption is always a bumpy road
–  Part of the fun!

•  Uncharted territory
•  Creative problem solving

Gen4 Challenges: Battlefield 4

•  Larger asset sizes and in greater quantities
–  i.e. BC7 compression times, photogrammetry, more draw calls, etc.
–  We had some systems buckle a bit under the exponential growth

•  i.e. Content and build pipelines in some areas
•  See: Scaling the Pipeline

Gen4 Challenges: The Good

•  Frostbite was already 64 bit from PC
•  Already had an optimized Direct3D 11 renderer

–  Many engines still on Direct3D 9 & 10 at this time
•  Architecture already supported multiple platforms
•  Most systems already designed with scalability and parallelism
•  New consoles are effectively PC platforms

–  x86 64bit
–  Same GPU\CPU vendor for both (AMD)
–  Great support from first party (Microsoft and Sony)

Gen4 Challenges: The Bad

•  Battlefield 3 was 30fps, Battlefield 4 needed to be 60fps
–  A huge undertaking to optimize for

•  Gameplay systems were a problem
–  Was single threaded in many places -> had to jobify
–  CPU code is at best 2-3x faster than PS3\360

•  While GPU is about 8x faster
–  Some cases we have measured 2x slower!!

•  Console platforms and tool chains were immature
–  Shader compiler bugs
–  Iteration time was very low
–  First party systems available last minute

Gen4 Challenges: The Bad

•  Rendering systems also had some challenges
–  Increased asset counts
–  CPU didn't scale up as much as GPU did.
–  Cross generational scaling (gen3 to gen4 to pc)

•  Had to implement very complex systems in short time
–  Memory manager

•  Had OS bugs like two virtual addresses pointing to same physical address…

–  Job scheduling
–  New rendering backends (GNM, D3D11.x)

Current Challenges

•  Rendering has progressed into physically based (PBR)
–  Frostbite has done a MAJOR push to revamp our rendering
–  See: SIGGRAPH: Moving Frostbite to PBR
–  See: SIGGRAPH: Unified Volumetrics
–  See: SIGGRAPH: Stochastic Screen-Space Reflections

•  Upcoming games want to render much more!
–  6x more draw calls
–  Frostbite 3 was already efficient at scaling (needed for Battlefield)
–  Linear cost for Pre PBR and PS3\360

•  Well defined problems and approximations
–  Exponential cost for PBR, new rendering systems and PS4\XB1

•  Cutting edge research

Physically Based Rendering

Displacement Mapping

Unified Volumetrics

Screen Space Reflections

Current Challenges

•  Result: Beautiful looking games! J
•  Result: Unhappy performance! L

•  The key factor is scalability
–  Increased asset counts and cost
–  [CPU] rendering systems
–  [CPU] submission to GPU
–  [GPU] rendering passes

Improving Scalability

•  Major optimization efforts ongoing at engine and game level
–  Shaders (Algorithms and Shader Compilers)
–  Passes (Reduction and Simplification)
–  Improvements to Culling, Occlusion, and Shadow Map Generation

•  Sensitive to asset counts
•  Reducing overhead (Proxy meshes, improved cache coherency, etc.)
•  Further optimized our already efficient systems

–  See: Culling the Battlefield

–  GPU driven rendering pipelines

Improving Scalability

•  Have already made significant optimizations and improvements
–  Still need to squeeze a bit more performance, though…

Improving Scalability

•  Have to look at full rendering stack to get the big picture
–  This includes the graphics APIs and drivers!

•  PS4 is very low level
–  Improvements here are on the developers, instead of Sony
–  Our backend is already very efficient, but can always be more optimal
–  We have high level information and knowledge

•  Easier to write a “driver” that favors patterns in our engine and games
•  Unlike PC drivers (which includes XB1 DX11)

Graphics APIs

•  Direct3D 11
–  High amount of CPU overhead due to a number of reasons

•  Lack of high level engine knowledge\context
•  Extensive validation of inputs to protect developers
•  Robustness over performance
•  Many unnecessary flushes and cache invalidation
•  Very inefficient parallelism

Graphics APIs

•  Direct3D 11
–  Architecture does not easily allow for GPU extensions

•  Limit engines from taking advantage of new hardware features

•  Windows OpenGL – Similar Story (though a bit better)

•  Apple OpenGL – Don’t even go there…

Graphics APIs

•  Frostbite has been pushing IHVs, Microsoft, and Khronos for years to
give AAA developers something better!
–  They didn’t think we could handle a low level API

•  GPUs are complex and with many nuances
•  PS4 gave us the opportunity to truly prove our competence

•  In collaboration with AMD, Frostbite helped pioneer Mantle
–  Extremely successful because the results kicked the industry into gear

Graphics APIs

DirectX12 3D Mark Performance

Graphics APIs

•  CPU parallelism is not the only goal!
•  Current GPUs support parallelism

–  Known as “Asynchronous Compute”
–  Allows for new performance tricks
–  Legacy APIs serialized potential graphics parallelism

•  i.e. Graphics -> Compute -> Graphics
–  Supported on PS4, Vulkan, DX12, Mantle

•  We now overlap compute with graphics when possible

•  We have moved a lot of our GPU work to async compute
–  We want to use it wherever there is a performance win

Summary

•  Frostbite has evolved significantly over the past decade
•  Game team adoption has grown exponentially
•  No longer developing tech for a single genre
•  Architectures need to be able to scale linearly
•  New consoles allow us to raise the bar on fidelity
•  Important to develop flexible software
•  Aim for full parallelism on CPU, but also GPU!

–  Upcoming graphics APIs let us optimize the whole stack

Thank You!

graham@frostbite.com

Questions?

