
1

Building a Managed
Wrapper with C++/CLI

Bonus
Chapter 2

Act in haste and repent at leisure; code too soon and debug forever.

Raymond Kennington

The Microsoft .NET platform provides many tools and libraries to support rapid
application development, code robustness, strict type safety, and much more.
However, in order to take advantage of the features provided by this excellent
platform, you must transition some, or all, of your existing code onto it. Some
companies have the resources to port their existing solutions to .NET, but many com-
panies (especially in game development) cannot spare the extra resources to
migrate such a significant amount of work to the .NET platform. Typically, the
largest amount of code for a game development studio is for the engine and its
related subsystems.

A strongly sought after feature for custom tools and editors is direct integration
with the engine instead of writing a watered-down version of the engine for func-
tionality purposes. Exposing an engine to a toolset is quite difficult and problem-
atic, especially when the engine is written in unmanaged C++ and the toolset is
written in managed C#. It is not realistic to port the entire engine to the .NET
framework for a number of reasons, such as performance and development time.
Yet, tools developers are starting to see significant productivity and maintainability
benefits from writing tools with .NET. The real trick is figuring out how to make
both sides of the development team happy: tools developers and engine developers.

In this chapter, I first introduce C++/CLI (Managed C++), then describe what it
is and what it is used for. I then introduce some rudimentary keywords and con-
structs used for working with managed code. Afterwards, a simple unmanaged
code base is introduced and a wrapper built around it. The final part of this chap-
ter shows how to wrap an unmanaged code base into a managed assembly with
C++/CLI.

Introduction to Managed C++ (C++/CLI)
The .NET framework provides a set of extensions to the Visual C++ compiler and
language to provide the ability to compile managed code and access the power and
functionality of the .NET class framework. These extensions are known as
C++/CLI (formerly known as Managed Extensions for C++), and include special
keywords, attributes, preprocessor directives, and pragmas that facilitate the
understanding of managed code. In addition to syntactical extensions, C++/CLI
also offers a variety of additional compiler and linker settings to support managed
compilation and the CLR. Even with the extensions, C++/CLI still follows the
same rules for C++ syntax and keywords, except it follows .NET rules for types
and architecture. C++/CLI can be thought of as “a language within a language.”

N o t e

As of .NET 2.0, Managed Extensions for C++ has become known as C++/CLI and offers a redesign
of the old syntax due to feedback from the development community. This chapter summarizes the
new syntax and everything else inherited from the update to C++/CLI. You can still use the old syn-
tax and functionality with the /clr:oldSyntax switch, but C++/CLI will be the only supported
dialect moving forward, so it is important that you consider this migration.

C++/CLI provides mechanisms that allow managed and unmanaged code to co-
exist and interoperate in the same assembly or even in the same source file. No
other language targeting the .NET runtime offers the interoperability features sup-
ported by C++/CLI.

Before continuing on into syntax, it is important to trace a mapping between
native type names and their equivalent managed representations when compiled
as managed code. Functions and methods are fairly automatic to wrap, but native
types can present certain challenges. Value types are fairly standard, but the
System.String object, for example, does not directly map to a char array.

Bonus Table 2.1 shows a listing of native types and their equivalent representations
in managed code. If you are using the native type identifiers in managed C++,
then you are actually aliasing the appropriate managed equivalent.

Bonus Chapter 2 ■ Building a Managed Wrapper with C++/CLI2

Introduction to Managed C++ (C++/CLI) 3

This chapter only covers a small subset of the C++/CLI language. If you want to
acquire comprehensive understanding of the language, I suggest you get the
C++/CLI Language Specification file from Microsoft’s Web site.

Overview of Extended Syntax
The syntax for the C++/CLI language is a couple hundred pages in length, so cov-
ering the entire language is unrealistic for this chapter. Even covering the changes
from Managed Extensions for C++ to C++/CLI is significant in length, so this
chapter will merely focus on the most important and commonly used changes
with the new language. If you are new to C++/CLI but have prior experience with
Managed C++, I recommend you download the C++/CLI Language Specification.

Bonus Table 2.1 Managed Equivalents of Native Types

Native Type Managed Equivalent

bool System.Boolean

signed char System.SByte

unsigned char System.Byte

wchar_t System.Char

double System.Double

long double System.Double

float System.Single

int System.Int32

signed int System.Int32

long System.Int32

signed long System.Int32

unsigned int System.UInt32

unsigned long System.UInt32

__int64 System.Int64

signed __int64 System.Int64

unsigned __int64 System.UInt64

short System.Int16

signed short System.Int16

unsigned short System.UInt16

void System.Void

If you have never worked with Managed C++, I still recommend you download
the specification and do not worry about learning the old syntax. Standard syntax
related to unmanaged C++, carried over to C++/CLI, will not be covered in this
section (such as type accessibility with the public and private keywords).

Reference Handles
Perhaps one of the most confusing elements of the old Managed C++ syntax was
the sharing of the * punctuator for unmanaged pointers and managed references.
The syntax for C++/CLI has cleaned up many aspects of the language, including
the introduction of reference handles. Reference handles are managed references
to objects that are located on the managed heap and are expressed with the ^ punc-
tuator (pronounced “cap”). Handles are completely different from pointers, which
just reference a particular location in memory. Pointers are unaffected by the
garbage collector, but this also means that the garbage collector cannot optimize
memory storage. Reference handles point to the object on the managed heap, so
memory can move around and handles will update accordingly. Developers must
explicitly delete memory when using pointers, whereas explicitly deleting is optional
when using reference handles.

The following code shows a simple way to create a string, referenced by a handle.

String^ myString = “Hello World”;

Just as new returns a pointer, gcnew returns a reference handle. Using gcnew offers an
easy way to differentiate between managed and unmanaged instantiations. The
following code shows gcnew returning a reference handle.

Object^ myObject = gcnew Object();

N o t e

Handles are type-safe, which means you cannot cast a handle to a void^.

In Managed Extensions for C++, reference types were prefaced with the __gc key-
word. In the new C++/CLI language, the __gc keyword is replaced by either ref
class or ref struct, depending on the type needed. The following code shows how
to declare a managed class.

ref class MyClass

{

// … Class implementation here

};

Bonus Chapter 2 ■ Building a Managed Wrapper with C++/CLI4

Similarly, value types were originally prefaced with the __value keyword, but now
you use either value class or value struct, depending on the type needed.

Keyword: abstract
The abstract is context-sensitive and is used to declare that a member can only be
defined in a derived type and that a class cannot be instantiated directly. This key-
word is also valid when compiling native targets.

The following code will generate a compile error (C3622) when executed because
MyBaseClass is marked as abstract.

ref class MyBaseClass abstract

{

public:

virtual void SimpleFunction() {}

};

int _tmain()

{

MyBaseClass^ baseClass = gcnew MyBaseClass;

}

Also, a similar compile error (C3634) will be generated for each of the two func-
tions in the following class when instantiated directly. One of the methods is
marked as abstract, while the other method is declared to be pure virtual.

ref class MyBaseClass abstract

{

public:

virtual void SimpleMethod abstract () {}

virtual void OtherMethod() = 0 {}

};

N o t e

Declaring an abstract function is the same as declaring a pure virtual function. Also, the enclosing
class is also declared as abstract if a member function is declared to be abstract.

Keyword: delegate
Programmers who have worked with C++ should be familiar with function pointers.
A similar mechanism known as a delegate exists in the .NET world. A delegate is

Introduction to Managed C++ (C++/CLI) 5

basically a reference type that can encapsulate one or more methods that conform
to a specific function prototype. The following code shows how to define a delegate.

public delegate void SimpleDelegate(int number);

Next, we will define a class that has a couple of methods conforming to our new
delegate signature.

ref class SimpleClass

{

public:

void SimpleMethod(int number)

{

// ... Do something special

}

void AnotherMethod(int anotherNumber)

{

// ... Do something else

}

}

At this point, we can simply attach methods to this delegate and fire a call using it.
The following code shows how to attach a method to the delegate and execute it.
A null check is used on the delegate instance to make sure that there is at least one
method bound to it. This variable will be null when no methods are attached to it,
so be sure to test for null.

int main()

{

SimpleClass^ simpleClass = gcnew SimpleClass;

SimpleDelegate^ simpleDelegate = gcnew SimpleDelegate(simpleClass,

&SimpleClass::SimpleMethod);

if (simpleDelegate)

simpleDelegate(12345);

}

You could attach a second method to the delegate by using the following code.

simpleDelegate += gcnew SimpleDelegate(simpleClass, &SimpleClass::AnotherMethod);

Bonus Chapter 2 ■ Building a Managed Wrapper with C++/CLI6

Similarly, you can remove an attached method by using the following code.

simpleDelegate -= gcnew SimpleDelegate(simpleClass, &SimpleClass::AnotherMethod);

Keyword: event
The .NET platform is largely event-driven, and being able to provide a way to han-
dle notifications when a significant event occurs is extremely powerful. The event
keyword is used to declare an event method of a managed class. Events in their
simplest form are associations between delegates (essentially function pointers in
C++) and member functions (essentially event handlers) that can handle fired
events and respond to them appropriately. Clients create event handlers by regis-
tering methods that map to the signature of the specified delegate. The great thing
about delegates is that they can have multiple methods registered to themselves.
This allows you to factor in an event-driven model for your applications that is
more or less a version of the observer pattern.

In C++/CLI, the first step is to create a delegate, unless the delegate is predefined
in the .NET framework in certain situations. The following code defines the dele-
gate that will be used as a simple event example.

public delegate void SimpleDelegateEventHandler(int number);

After creating a delegate, the next step is to create an event within a class that con-
forms to the delegate.

ref class SimpleClass

{

public:

event SimpleDelegateEventHandler^ OnSimple;

};

Now that the event is defined, some functionality is usually placed within the event
class in order to fire the event with the necessary parameters. The following code
shows a revised version of the class.

ref class SimpleClass

{

public:

event SimpleDelegateEventHandler^ OnSimple;

void FireSimpleEvent(int number)

{

Introduction to Managed C++ (C++/CLI) 7

// Check if methods are attached

// to the event (prevent exception)

if (OnSimple)

OnSimple(number);

}

};

The definition of an event is now complete, so we can move on to attaching and
calling this new event from client classes. The first thing to do is create a class that
defines a method conforming to the delegate signature.

ref class SimpleClientClass

{

public:

void MySimpleEventHandler(int number)

{

// … Do something

}

};

With the event handler defined, we can move on to attaching this event handler to
the event. For that, we need an instance of the class defining the event, and we need
an instance of the class defining the event handler. Event handlers can be attached
to an event or detached from an event with the += and -= operators, respectively.

The following code shows how to do this.

SimpleClass^ myEventClass = gcnew SimpleClass();

SimpleClientClient^ myEventHandlerClass = gcnew SimpleClientClient();

myEventClass->OnSimple += gcnew ClickEventHandler(myEventHandlerClass,

&SimpleClientClient::MySimpleEventHandler);

myEventClass->FireSimpleEvent(12345);

Keyword: interface
An interface is used to define how a class may be implemented, and C++/CLI
offers the ability to declare a managed interface with the interface keyword.
Classes inherit (or more correctly, implement) interfaces, but it is important to
know that an interface is not a class. Classes do not override methods defined in
an interface; they implement them instead. Implementation of a member does not
require a name lookup (or v-table), unlike overridden members of a class. An
interface can define functions, properties, and events, all of which must have public

Bonus Chapter 2 ■ Building a Managed Wrapper with C++/CLI8

accessibility and be implemented by classes implementing the interface. You do
not specify accessibility on interface member definitions, because they are auto-
matically public. Interfaces can also define static data, members, events, functions,
and properties. These static members must be defined and implemented in the
interface.

The following code shows how to define and implement an interface.

public interface class ISimpleInterface

{

property int SimpleProperty;

void SimpleMethod();

static void DoSomethingUseful()

{

// … Do something here

}

}

public ref class SimpleClass : ISimpleInterface

{

private:

int simpleProperty;

public:

property int SimpleProperty

{

virtual int get() { return simpleProperty; }

virtual void set(int value) { simpleProperty = value; }

}

virtual void SimpleMethod()

{

// … Do something here

}

}

N o t e

The C# language only supports single inheritance, but multiple inheritance can be achieved through
the clever use of interfaces.

Introduction to Managed C++ (C++/CLI) 9

Keyword: property
On a technical level, the Common Language Runtime only recognizes methods
and fields; the closest thing to the concept of a property is nested types. Even
though properties are not directly recognized as a type, metadata can be used by
certain programming languages to convey the concept of properties. Technically
speaking, a property is a member of its containing type. However, properties do
not have any allocated space because they are basically references to the get and set
methods representing the property. The compiler for each language generates the
property metadata when the appropriate syntax is encountered. With first class
support for properties, the C# compiler generates the get and set property methods,
as well as the property metadata. Managed C++ (/clr:oldSyntax) does not have
first class support for properties, which leads to ugly syntax and subtle bugs. The
new language introduced with C++/CLI has first class support for properties,
which offers the same clean syntax that the C# language has for properties.

The following code shows how to define a property in C++/CLI.

private:

String^ simpleString;

public:

property String^ SimpleString

{

String^ get()

{

return simpleString;

}

void set(String^ value)

{

simpleString = value;

}

}

For the most part, typical implementations follow the same simple pattern for get
and set property methods. For the properties that do not implement business rules
like value checking, you can use shorthand syntax to declare a property with
default get and set methods and a private member variable.

The following code shows how to declare a property with shorthand syntax.

property String^ SimpleString;

Bonus Chapter 2 ■ Building a Managed Wrapper with C++/CLI10

N o t e

Keep in mind that this is easily expanded on later without breaking any interfaces, simply by
expanding the construct at a later point.

Keyword: sealed
Sometimes it is desirable to prevent a class from being a base class, or to prevent a
method from being overridden in a derived class. This is accomplished using the
sealed keyword.

The following code shows how to seal a class from being derived.

ref class SimpleClass sealed

{

// ... Class implementation here

};

The following code shows how to seal a method from being overridden.

ref class SimpleClass : BaseClass

{

public:

virtual void DoSomething() sealed

{

// … Do something

}

};

N o t e

The example class inherits from a base class because having a sealed virtual method on a base class
is redundant; hence the inheritance.

With a sealed method in a base class, you cannot override the method as shown in
the following code.

public ref class BaseClass

{

public:

virtual void SimpleMethod() sealed

{

// … Do something

}

Introduction to Managed C++ (C++/CLI) 11

};

public ref class SimpleClass sealed : BaseClass

{

public:

virtual void SimpleMethod() override

{

// … Do something

}

};

However, you can use the new modifier to specify a new implementation for a
sealed method under the same name. The following code shows how to do this.

public ref class BaseClass

{

public:

virtual void SimpleMethod() sealed

{

// … Do something

}

};

public ref class SimpleClass sealed : BaseClass

{

public:

virtual void SimpleMethod() override

{

// … Do something

}

};

Keyword: __identifier
Sometimes you may require the ability to declare a class and use it, even though its
name is a reserved language keyword. The __identifier keyword offers the ability
to use a C++ keyword as an identifier.

The following code defines a class called template that is then instantiated with the
__identifier keyword.

public ref class template

{

Bonus Chapter 2 ■ Building a Managed Wrapper with C++/CLI12

// … Class Implementation

}

int main()

{

__identifier(template)^ templateClass = gcnew __identifier(template)();

}

N o t e

Although using the __identifier keyword for identifiers that are not actually keywords is per-
mitted, doing so is strongly discouraged.

Keyword: pin_ptr
One of the biggest challenges when interoperating with managed and unmanaged
code is passing memory back and forth. Managed code stores memory in a
garbage-collected heap where physical addresses of memory are never guaranteed
to remain static throughout the lifetime of a managed application. In fact, you can
almost be certain that the addresses will change (though the references will update
the new location accordingly) when the garbage collector compacts unused mem-
ory blocks and performs optimization. Because of this, developers interoperating
with managed and unmanaged code need a way to force the garbage collector to
leave certain memory addresses where they are. This functionality is exposed
through the pin_ptr keyword that lets you declare a pinning pointer, which is an
interior pointer that stops the garbage collector from moving an object onto the
managed heap. Pinning pointers are necessary so that managed memory address-
es passed to unmanaged code will not unexpectedly change during resolution of
the unmanaged context. An object is no longer pinned when the pinning pointer
goes out of scope and no other pinning pointers reference the object.

The following code describes a simple unmanaged function that takes in an inte-
ger array and assigns values to the elements.

#pragma unmanaged

void NativeCall(int* numberArray, int arraySize)

{

for (int index = 0; index < arraySize; index++)

{

numberArray[index] = index;

}

}

Introduction to Managed C++ (C++/CLI) 13

The following code shows how to create a pinning pointer around a managed inte-
ger array and pass it into the NativeCall function.

using namespace System;

#pragma managed

public ref class SimpleClass

{

private:

array<int>^ simpleArray;

public:

SimpleClass()

{

simpleArray = gcnew array<int>(256);

}

public void CallNativeFunction()

{

// Created a pinning pointer at the first array element

pin_ptr<int> pinnedPointer = &simpleArray[0];

// Create a native pointer of the pinning pointer

int* nativePointer = pinnedPointer;

// Execute native call

NativeCall(nativePointer);

}

};

Pinning pointers can be used on reference handles, value types, boxed type handles,
members of managed types, and on elements in a managed array; you cannot
point pinning pointers to reference types. You also cannot use pinning pointers as
function parameters, members of a class, target types for casting, or for the return
type of a function. Pinning pointers cannot be declared as static variables; they
must be declared as local variables on the stack. Because pinning pointers are basi-
cally a superset of native pointers, anything that can be assigned to a native pointer
can also be assigned to a pin_ptr. Pinning pointers are able to perform the same
operations that native pointers can perform, including pointer arithmetic and
comparison.

N o t e

Pinning a member in an object has the effect of pinning the entire object.

Bonus Chapter 2 ■ Building a Managed Wrapper with C++/CLI14

Keyword: safe_cast
An extremely useful keyword in C++/CLI is safe_cast, which is the successor to
__try_cast. This keyword provides the ability to change the type of an expression
and generate MSIL code that is verifiable and safe. The safe_cast keyword accepts
a reference type handle, value type, value type handle, or tracking reference to a
value or reference type to use as the type ID, and safe_cast operates on any expres-
sion that can evaluate to one of the supported type IDs. This keyword will convert
the result from the evaluated expression to the specified type ID. An exception will
be thrown (InvalidCastException) if a safe cast cannot be performed.

The following code shows how to use the safe_cast keyword.

interface class ISword {};

interface class IShield {};

ref class BroadSword : public ISword {};

int main()

{

ISword^ sword = gcnew BroadSword;

try

{

// The following line throws an exception. IShield is not

// implemented by BroadSword.

IShield^ castTest = safe_cast<IShield^>(sword);

// The following line successfully casts.

BroadSword^ broadSword = safe_cast<BroadSword^>(sword);

}

catch (InvalidCastException^)

{

// Handle cast exceptions

}

}

N o t e

You can use a static_cast in most places that a safe_cast can be used, but you are not guar-
anteed to end up with verifiable MSIL; safe_cast guarantees this.

Introduction to Managed C++ (C++/CLI) 15

Keyword: typeid
When working with managed code, there are many cases when you need to get the
type information for a class or instance. C++/CLI allows you to get the
System::Type for a type at compile time, similarly to getting a type at runtime using
GetType. This functionality is provided to the C++/CLI language with the typeid
keyword, which is the successor to __typeof in the old Managed C++ syntax
(/clr:oldSyntax).

The following code shows how to get the System::Type object for a particular type.

ref class SimpleClass

{

// … Simple class implementation here

};

int main()

{

SimpleClass^ simpleClass = gcnew SimpleClass;

Type^ simpleClassType1 = simpleClass::typeid;

Type^ simpleClassType2 = simpleClass->GetType();

if (simpleClassType1 == simpleClassType2)

{

Console.WriteLine(“Both types are identical”);

}

}

Common Language Runtime Compilation (/clr)
The most important compiler option for C++/CLI is the /clr switch that specifies
how applications and components will use the CLR. Just using the /clr switch as
it is will enable your C++ application to use the managed runtime by creating
metadata for your application that can be consumed by other CLR applications.
This switch also allows your application to consume the data and types present in
the metadata of other CLR applications. This is the default option for C++/CLI
projects (also known as Mixed C++), and it allows assemblies to contain both
unmanaged and managed parts, allowing them to take advantage of the features of
.NET but still contain unmanaged code. Mixed assemblies make it much easier to
update applications to use .NET features without requiring a complete rewrite.

Bonus Chapter 2 ■ Building a Managed Wrapper with C++/CLI16

Introduction to Managed C++ (C++/CLI) 17

Although Mixed C++ is the default option, it is one of three distinct types of com-
ponents and applications. You can also create Pure C++ and Safe C++.

Pure C++ (/clr:pure) assemblies can contain both managed and unmanaged data
types, but they can only contain managed code. P/Invoke can still be used to pro-
vide legacy interoperability, but you cannot use unmanaged C++ features with this
option. One of the biggest advantages to using pure assemblies comes from per-
formance gains. Pure assemblies can only contain MSIL, which means that no
managed and unmanaged thunking occurs. Pure assemblies are also domain-
aware, which makes interoperability between other .NET components easier and
safer than mixed assemblies. Pure assemblies can also be loaded in memory or
streamed, which is different from mixed assemblies, which are required to be
located on the disk due to a dependency on the Windows loading mechanisms.
Reflection is also severely dysfunctional in mixed assemblies, whereas pure assem-
blies have full reflection support. There are some disadvantages to using pure
assemblies though. One reason, the most obvious, is that you cannot use pure
assemblies to support interoperability with unmanaged code. This also means that
pure assemblies cannot even implement COM interfaces or provide native call-
backs. You also cannot use the ATL or MFC libraries, and the floating point
options for exception handling and alignment are not adjustable.

Verifiable C++ (/clr:safe) assemblies are restricted to only containing code that
can be guaranteed by the Common Language Runtime and code that does not vio-
late any current security settings. You can enforce permissions, such as denying
access to the file system, and these permissions will be enforced upon the verifiable
assemblies by the CLR. It is important to consider building your libraries as veri-
fiable code because future versions of the Windows operating system will start
requiring that components and applications be verifiable and safe. Obviously, the
benefit from using verifiable code is increased security, but you sacrifice CRT sup-
port and C++ interop features. You cannot use native code or data types in verifi-
able assemblies. You can, however, compile P/Invoke calls, but keep in mind that
even if the code compiles you may still encounter security errors when you
attempt to run the interop calls in an environment that disallows running them.

The three compilation types with the /clr switch are shown in Bonus Figure 2.1.

N o t e

You can compile your code with the old syntax from Managed Extensions for C++ by using the
/clr:oldSyntax switch.

Referencing Assemblies and Classes
Just like any other language targeting the .NET runtime, C++/CLI must add ref-
erences to external managed components in order to gain access to their exposed
functionality. In C++/CLI, assembly referencing is done with the #using directive.
The syntax for this directive is #using file [as_friend], where file can be a man-
aged .dll, .exe, .netmodule, or .obj. An optional flag is as_friend, which is used to
specify that all types within a file are accessible. Look into friend assemblies for
more information on the type visibility of assemblies. Executable assemblies
imported with the #using directive must be either compiled with /clr:safe,
/clr:pure, or another verifiable language like C#. Trying to import metadata from
an .exe assembly that has been compiled with /clr will result in an exception.

Assemblies references are located by either checking a path specified in the #using
statement, the current working directory, the system directory of the .NET frame-
work, directories added with the /AI compiler option, or directories added to the
LIBPATH environment variable.

For custom assemblies, the syntax for the #using statement is

#using “YourAssembly.dll”

Bonus Chapter 2 ■ Building a Managed Wrapper with C++/CLI18

Bonus Figure 2.1 Available C++ compilation types.

For framework assemblies, the syntax for the #using statement is

#using <System.Drawing.dll>

N o t e

When compiling with the /clr switch, the mscorlib.dll assembly is referenced automatically.

Mixing Managed and Unmanaged Code
C++/CLI supports the ability to mix managed and unmanaged code, which is a
feature that is unique to C++/CLI; no other CLR language supports this feature.
Managed and unmanaged code can be spread across many files within a single
solution, but the really interesting feature is the ability to mix managed and
unmanaged code within the same source file and within the same module. The
compiler provides module-level control (/clr switch) for compiling either man-
aged or unmanaged functions. Any unmanaged code will be compiled for the
native platform, and execution of this code will be passed to native execution by
the Common Language Runtime. By default, code in a C++/CLI project will be
compiled to a managed target.

Mixing unmanaged and managed code in the same source file is accomplished
through the use of the #pragma managed and #pragma unmanaged directives. Placing a
#pragma managed directive before a function causes the function to be compiled as
managed code, and you achieve an unmanaged effect using the #pragma unmanaged
directive. These pragmas can precede a function, but cannot fall within the body
of a function. Also, place the directives after #include statements, not before. The
following code shows how to use the managed and unmanaged pragmas.

#using <mscorlib.dll>

using namespace System;

#include <stdio.h>

#pragma managed

void ManagedFunctionTest()

{

printf(“Hello Managed World!\n”);

ManagedFunction();

}

#pragma unmanaged

void UnmanagedFunctionTest()

Introduction to Managed C++ (C++/CLI) 19

{

printf(“Hello Unmanaged World!\n”);

ManagedFunctionTest();

}

#pragma managed

int main()

{

UnmanagedFunctionTest();

return 0;

}

N o t e

The compiler will ignore the managed and unmanaged pragmas when the /clr switch is not used.

It is also important to mention that when templates are involved, the pragma state
at the time of definition is used to determine whether the code is managed or
unmanaged.

Another little trick that can prove useful in certain situations is the ability to deter-
mine whether a source file is being compiled with the /clr switch or not. You can
use the __cplusplus_cli preprocessor define to include or exclude code for differ-
ent compile targets.

The following code shows how to include code when not compiling with the /clr
switch.

#ifndef __cplusplus_cli

// … Do something when compiling strictly for a native target

#endif

Example Unmanaged 3D Engine
In order to discuss interoperability and the creation of a wrapper, we need some
sort of component or system to wrap. For this chapter, we will build a simple sta-
tic library in unmanaged C++ that will create a Direct3D device and render a
scene to it. In essence, we are building an extremely simple “rendering engine,”
which we will wrap into a managed library and consume in this chapter. There will
not be much explanation for the base engine, because you should already have a
basic understanding of the concepts and technology used. With that said, the full
source code will be shown here so you can see the implementation details.

Bonus Chapter 2 ■ Building a Managed Wrapper with C++/CLI20

The following source code describes the header file of SimpleEngine.

#pragma once

#include <windows.h>

#include <tchar.h>

#include <d3d9.h>

#include <d3dx9.h>

//! Structure describing a vertex of the pyramid object

struct SimpleVertex

{

//! The transformed(screen space) position for the vertex

float X, Y, Z;

//! The vertex color

DWORD Color;

};

//! Describes the data format of the SimpleVertex structure

const DWORD SimpleVertexFVF = D3DFVF_XYZ | D3DFVF_DIFFUSE;

//! Simple class to provide a static lib

//! unmanaged 3D “engine” for the example

class __declspec(dllexport) CSimpleEngine

{

public:

//! Constructor

CSimpleEngine();

//! Destructor

~CSimpleEngine();

public:

//! Creates a Direct3D device and

//! context using the specified window

//! handle and dimensions

HRESULT CreateContext(HWND window,

int width,

int height);

//! Rebuilds the projection matrix of

//! the device when the context resizes

Example Unmanaged 3D Engine 21

HRESULT ResizeContext(int width, int height);

//! Renders the pyramid scene using the

//! Direct3D render device

HRESULT RenderContext();

//! Used to release the device and

//! Direct3D context resources

HRESULT ReleaseContext();

private:

//! Initializes the device settings of the context

HRESULT InitializeContext();

//! Initializes the pyramid object resources

HRESULT InitializeResources();

//! Releases the pyramid object resources

HRESULT ReleaseResources();

public:

//! Sets the color of the top corner pyramid vertex

HRESULT SetColorTopCorner(DWORD color);

//! Sets the color of the right front pyramid vertex

HRESULT SetColorRightFront(DWORD color);

//! Sets the color of the left front pyramid vertex

HRESULT SetColorLeftFront(DWORD color);

//! Sets the color of the back left pyramid vertex

HRESULT SetColorBackLeft(DWORD color);

//! Sets the color of the back right pyramid vertex

HRESULT SetColorBackRight(DWORD color);

//! Sets the color of the back buffer

HRESULT SetColorBackBuffer(DWORD color);

//! Gets the color of the top corner pyramid vertex

DWORD GetColorTopCorner();

Bonus Chapter 2 ■ Building a Managed Wrapper with C++/CLI22

//! Gets the color of the right front pyramid vertex

DWORD GetColorRightFront();

//! Gets the color of the left front pyramid vertex

DWORD GetColorLeftFront();

//! Gets the color of the back left pyramid vertex

DWORD GetColorBackLeft();

//! Gets the color of the back right pyramid vertex

DWORD GetColorBackRight();

//! Gets the color of the back buffer

DWORD GetColorBackBuffer();

private:

//! Direct3D object instance

LPDIRECT3D9 direct3D;

//! Direct3D device object instance

LPDIRECT3DDEVICE9 device;

//! Handle to the window that Direct3D will be bound

HWND window;

//! Vertex buffer for the pyramid object

IDirect3DVertexBuffer9* vertexBuffer;

//! Array describing the vertices making

//! up the pyramid object

SimpleVertex* vertices;

//! Value describing the color of the top

//! corner pyramid vertex

DWORD colorTopCorner;

//! Value describing the color of the right

//! front pyramid vertex

DWORD colorRightFront;

//! Value describing the color of the left

//! front pyramid vertex

DWORD colorLeftFront;

Example Unmanaged 3D Engine 23

//! Value describing the color of the back

//! left pyramid vertex

DWORD colorBackLeft;

//! Value describing the color of the back

//! right pyramid vertex

DWORD colorBackRight;

//! Value describing the color of the back buffer

DWORD colorBackBuffer;

//! Flag specifying if the renderer

//! is currently unavailable

BOOL isLocked;

};

The following source code describes the source file of SimpleEngine.

#include “SimpleEngine.hpp”

#pragma comment(lib, “d3d9.lib”)

#pragma comment(lib, “d3dx9.lib”)

//! Constructor

CSimpleEngine::CSimpleEngine()

{

colorTopCorner = 0xFFFF0000;

colorRightFront = 0xFF0000FF;

colorLeftFront = 0xFF00FF00;

colorBackLeft = 0xFF0000FF;

colorBackRight = 0xFF00FF00;

colorBackBuffer = 0xFF000000;

vertexBuffer = NULL;

vertices = NULL;

isLocked = TRUE;

}

//! Destructor

CSimpleEngine::~CSimpleEngine()

{

ReleaseContext();

}

Bonus Chapter 2 ■ Building a Managed Wrapper with C++/CLI24

//! Creates a Direct3D device and context

//! using the specified window handle and dimensions

HRESULT CSimpleEngine::CreateContext(HWND windowHandle,

int width,

int height)

{

window = (HWND)windowHandle;

RECT bounds;

::GetClientRect(window, &bounds);

direct3D = Direct3DCreate9(D3D_SDK_VERSION);

if (direct3D == NULL)

{

MessageBox(NULL,

_T(“Can’t find Direct3D SDK Version 9”),

_T(“SimpleEngine Error”),

MB_OK | MB_ICONEXCLAMATION);

return E_FAIL;

}

D3DPRESENT_PARAMETERS presentParams =

{

width, // Back Buffer Width

height, // Back Buffer Height

D3DFMT_R5G6B5, // Back Buffer Format (Color Depth)

1, // Back Buffer Count (Double Buffer)

D3DMULTISAMPLE_NONE, // No Multi Sample Type

0, // No Multi Sample Quality

D3DSWAPEFFECT_DISCARD, // Swap Effect (Fast)

window, // The Window Handle

TRUE, // Windowed or Fullscreen

TRUE, // Enable Auto Depth Stencil

D3DFMT_D16, // 16Bit Z-Buffer (Depth Buffer)

0, // No Flags

D3DPRESENT_RATE_DEFAULT, // Default Refresh Rate

D3DPRESENT_INTERVAL_DEFAULT // Default Presentation Interval (V-Sync)

};

Example Unmanaged 3D Engine 25

if (FAILED(direct3D->CheckDeviceFormat(D3DADAPTER_DEFAULT,

D3DDEVTYPE_HAL,

presentParams.BackBufferFormat,

D3DUSAGE_DEPTHSTENCIL,

D3DRTYPE_SURFACE,

presentParams.AutoDepthStencilFormat)))

{

::MessageBox(NULL,

_T(“Cannot query specified surface format”),

_T(“SimpleEngine Error”),

MB_OK | MB_ICONEXCLAMATION);

return E_FAIL;

}

if (FAILED(direct3D->CreateDevice(D3DADAPTER_DEFAULT,

D3DDEVTYPE_HAL,

window,

D3DCREATE_SOFTWARE_VERTEXPROCESSING,

&presentParams,

&device)))

{

::MessageBox(NULL,

_T(“Cannot create Direct3D device”),

_T(“SimpleEngine Error”),

MB_OK | MB_ICONEXCLAMATION);

return E_FAIL;

}

ResizeContext(width, height);

InitializeResources();

InitializeContext();

return S_OK;

}

//! Rebuilds the projection matrix of the device when the context resizes

HRESULT CSimpleEngine::ResizeContext(int width, int height)

{

if (height == 0)

height = 1;

Bonus Chapter 2 ■ Building a Managed Wrapper with C++/CLI26

D3DXMATRIXA16 projection;

D3DXMatrixPerspectiveFovLH(&projection,

45.0f,

(float)width / (float)height,

0.1f,

100.0f);

device->SetTransform(D3DTS_PROJECTION, &projection);

D3DXMatrixIdentity(&projection);

return S_OK;

}

//! Renders the pyramid scene using the Direct3D render device

HRESULT CSimpleEngine::RenderContext()

{

if (isLocked != TRUE)

{

D3DXMATRIX view;

D3DXMatrixLookAtLH(&view,

&D3DXVECTOR3(-5.0f, 0.5f, 16.0f),

&D3DXVECTOR3(0.0f, 0.5f, 0.0f),

&D3DXVECTOR3(0.0f, 1.0f, 0.0f));

device->SetTransform(D3DTS_VIEW, &view);

device->Clear(0,

NULL,

D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER,

colorBackBuffer,

1.0f,

0);

device->BeginScene();

device->SetStreamSource(0,

vertexBuffer,

0,

sizeof(SimpleVertex));

device->SetFVF(SimpleVertexFVF);

device->DrawPrimitive(D3DPT_TRIANGLEFAN, 0, 4);

Example Unmanaged 3D Engine 27

device->EndScene();

device->Present(NULL, NULL, NULL, NULL);

}

return S_OK;

}

//! Used to release the device and Direct3D context resources

HRESULT CSimpleEngine::ReleaseContext()

{

ReleaseResources();

if (device != NULL)

device->Release();

if (direct3D != NULL)

direct3D->Release();

device = NULL;

direct3D = NULL;

return S_OK;

}

//! Initializes the device settings of the context

HRESULT CSimpleEngine::InitializeContext()

{

device->SetRenderState(D3DRS_ZENABLE, TRUE);

device->SetRenderState(D3DRS_CULLMODE, FALSE);

device->SetRenderState(D3DRS_LIGHTING, FALSE);

device->SetRenderState(D3DRS_SHADEMODE, D3DSHADE_PHONG);

isLocked = FALSE;

return S_OK;

}

//! Initializes the pyramid object resources

HRESULT CSimpleEngine::InitializeResources()

{

ReleaseResources();

Bonus Chapter 2 ■ Building a Managed Wrapper with C++/CLI28

vertices = new SimpleVertex[6];

::ZeroMemory(vertices, sizeof(SimpleVertex) * 6);

vertices[0].X = -4.0f;

vertices[0].Y = 2.0f;

vertices[0].Z = 12.0f;

vertices[0].Color = colorTopCorner;

vertices[1].X = -3.0f;

vertices[1].Y = 0.0f;

vertices[1].Z = 11.0f;

vertices[1].Color = colorRightFront;

vertices[2].X = -5.0f;

vertices[2].Y = 0.0f;

vertices[2].Z = 11.0f;

vertices[2].Color = colorLeftFront;

vertices[3].X = -5.0f;

vertices[3].Y = 0.0f;

vertices[3].Z = 13.0f;

vertices[3].Color = colorBackLeft;

vertices[4].X = -3.0f;

vertices[4].Y = 0.0f;

vertices[4].Z = 13.0f;

vertices[4].Color = colorBackRight;

vertices[5].X = -3.0f;

vertices[5].Y = 0.0f;

vertices[5].Z = 11.0f;

vertices[5].Color = colorRightFront;

device->CreateVertexBuffer(6 * sizeof(SimpleVertex),

0,

SimpleVertexFVF,

D3DPOOL_DEFAULT,

&vertexBuffer,

NULL);

unsigned char* vertexData = NULL;

Example Unmanaged 3D Engine 29

vertexBuffer->Lock(0,

sizeof(SimpleVertex) * 6,

(void**)&vertexData,

0);

{

::memcpy(vertexData, vertices, sizeof(SimpleVertex) * 6);

}

vertexBuffer->Unlock();

isLocked = FALSE;

return S_OK;

}

//! Releases the pyramid object resources

HRESULT CSimpleEngine::ReleaseResources()

{

isLocked = TRUE;

if (vertexBuffer != NULL)

{

vertexBuffer->Release();

vertexBuffer = NULL;

}

delete [] vertices;

vertices = NULL;

return S_OK;

}

//! Sets the color of the top corner pyramid vertex

HRESULT CSimpleEngine::SetColorTopCorner(DWORD color)

{

colorTopCorner = color;

ReleaseResources();

InitializeResources();

return S_OK;

}

//! Sets the color of the right front pyramid vertex

HRESULT CSimpleEngine::SetColorRightFront(DWORD color)

{

Bonus Chapter 2 ■ Building a Managed Wrapper with C++/CLI30

colorRightFront = color;

ReleaseResources();

InitializeResources();

return S_OK;

}

//! Sets the color of the left front pyramid vertex

HRESULT CSimpleEngine::SetColorLeftFront(DWORD color)

{

colorLeftFront = color;

ReleaseResources();

InitializeResources();

return S_OK;

}

//! Sets the color of the back left pyramid vertex

HRESULT CSimpleEngine::SetColorBackLeft(DWORD color)

{

colorBackLeft = color;

ReleaseResources();

InitializeResources();

return S_OK;

}

//! Sets the color of the back right pyramid vertex

HRESULT CSimpleEngine::SetColorBackRight(DWORD color)

{

colorBackRight = color;

ReleaseResources();

InitializeResources();

return S_OK;

}

//! Sets the color of the back buffer

HRESULT CSimpleEngine::SetColorBackBuffer(DWORD color)

{

colorBackBuffer = color;

return S_OK;

}

//! Gets the color of the top corner pyramid vertex

DWORD CSimpleEngine::GetColorTopCorner()

{

Example Unmanaged 3D Engine 31

return colorTopCorner;

}

//! Gets the color of the right front pyramid vertex

DWORD CSimpleEngine::GetColorRightFront()

{

return colorRightFront;

}

//! Gets the color of the left front pyramid vertex

DWORD CSimpleEngine::GetColorLeftFront()

{

return colorLeftFront;

}

//! Gets the color of the back left pyramid vertex

DWORD CSimpleEngine::GetColorBackLeft()

{

return colorBackLeft;

}

//! Gets the color of the back right pyramid vertex

DWORD CSimpleEngine::GetColorBackRight()

{

return colorBackRight;

}

//! Gets the color of the back buffer

DWORD CSimpleEngine::GetColorBackBuffer()

{

return colorBackBuffer;

}

Basically, all that SimpleEngine does is create an unmanaged Direct3D context, ren-
der a scene with a multicolored pyramid, and release the context. In addition to
the context and device-specific functions, there are a bunch of accessors that allow
you to set and get the color values for various vertices of the pyramid, as well as
getting and setting the background color of the device. Later on, we will wrap these
accessors into properties within a managed wrapper so we can witness real-time
changes to the rendered scene.

Bonus Chapter 2 ■ Building a Managed Wrapper with C++/CLI32

Creating a Managed Wrapper for SimpleEngine
A device context in unmanaged Direct3D is provided with a Win32 window han-
dle with which to determine the rendering region for the device. With unmanaged
code, you create a new window and get a window handle back, but with Windows
Forms, you are working with managed objects. Obviously, you cannot pass a Form
reference to unmanaged Direct3D, so how can you use Direct3D in a managed
application without using managed Direct3D? The .NET framework may use a
Form class to represent a window, but the underlying architecture still uses the
Win32 to create the windows, so a handle for the window must be created some-
where. This handle is a property on the Form class called Handle, and we can pass
that to unmanaged Direct3D when creating a device. With that in mind, we can
look into creating a managed wrapper and adapter around our existing unman-
aged Direct3D code base (SimpleEngine) using C++/CLI.

The wrapper built in this chapter is very simple, and basically consists of a man-
aged class that contains an unmanaged pointer to an instance of SimpleEngine.
Wrapper methods are provided that invoke calls on the unmanaged class instance.
The following code shows the header file for the managed wrapper.

#pragma once

using namespace System::Drawing;

using namespace System::ComponentModel;

namespace ManagedSimpleEngine

{

//! Managed wrapper around the unmanaged SimpleEngine class

public ref class SimpleEngine

{

public:

//! Constructor

SimpleEngine();

//! Destructor

~SimpleEngine();

//! Creates a Direct3D device and context using the

//! specified window handle and dimensions

BOOL CreateContext(System::IntPtr window, int width, int height);

//! Rebuilds the projection matrix of the device when the

//! context resizes

Creating a Managed Wrapper for SimpleEngine 33

void ResizeContext(int width, int height);

//! Renders the pyramid scene using the Direct3D render device

void RenderContext();

//! Used to release the device and Direct3D context resources

void ReleaseContext();

Rather than wrapping a bunch of get and set methods for the public properties of
SimpleEngine, we will wrap these methods into properties that consuming languages
like C# can access with a clean and familiar syntax. In addition to the properties,
the Category and Description attributes are also specified so that if this class is
bound to a PropertyGrid, we get useful and descriptive content.

public:

[Category(“Pyramid Colors”)]

[Description(“Modifies the top corner vertex color.”)]

property Color ColorTopCorner

{

Color get();

void set(Color color);

}

[Category(“Pyramid Colors”)]

[Description(“Modifies the right front vertex color.”)]

property Color ColorRightFront

{

Color get();

void set(Color color);

}

[Category(“Pyramid Colors”)]

[Description(“Modifies the left front vertex color.”)]

property Color ColorLeftFront

{

Color get();

void set(Color color);

}

[Category(“Pyramid Colors”)]

[Description(“Modifies the back left vertex color.”)]

property Color ColorBackLeft

{

Bonus Chapter 2 ■ Building a Managed Wrapper with C++/CLI34

Color get();

void set(Color color);

}

[Category(“Pyramid Colors”)]

[Description(“Modifies the back right vertex color.”)]

property Color ColorBackRight

{

Color get();

void set(Color color);

}

[Category(“Context Settings”)]

[Description(“Modifies the back buffer color.”)]

property Color ColorBackBuffer

{

Color get();

void set(Color color);

}

private:

//! Points to an instance of the unmanaged

//! SimpleEngine class

CSimpleEngine* engine;

};

}

It is important to keep in mind that even though the unmanaged class is instantiated
from within a managed class, the unmanaged memory remains unmanaged and
must be explicitly released. The destructor can be used to release unmanaged
memory, similar to the way memory is released in unmanaged C++.

The following source code describes the implementation details behind the man-
aged wrapper.

#include “stdafx.h”

#include “ManagedSimpleEngine.h”

namespace ManagedSimpleEngine

{

//! Constructor

SimpleEngine::SimpleEngine()

{

Creating a Managed Wrapper for SimpleEngine 35

engine = new CSimpleEngine();

}

//! Destructor

SimpleEngine::~SimpleEngine()

{

if (engine != NULL)

delete engine;

}

//! Creates a Direct3D device and context using the

//! specified window handle and dimensions

BOOL SimpleEngine::CreateContext(System::IntPtr window, int width, int height)

{

if (SUCCEEDED(engine->CreateContext((HWND)window.ToPointer(),

width,

height)))

return TRUE;

return FALSE;

}

//! Rebuilds the projection matrix of the device when the context resizes

void SimpleEngine::ResizeContext(int width, int height)

{

engine->ResizeContext(width, height);

}

//! Renders the pyramid scene using the Direct3D render device

void SimpleEngine::RenderContext()

{

engine->RenderContext();

}

//! Used to release the device and Direct3D context resources

void SimpleEngine::ReleaseContext()

{

engine->ReleaseContext();

}

//! Gets the color of the top corner pyramid vertex

Bonus Chapter 2 ■ Building a Managed Wrapper with C++/CLI36

Color SimpleEngine::ColorTopCorner::get()

{

return Color::FromArgb(engine->GetColorTopCorner());

}

//! Sets the color of the top corner pyramid vertex

void SimpleEngine::ColorTopCorner::set(Color color)

{

engine->SetColorTopCorner(color.ToArgb());

}

//! Gets the color of the right front pyramid vertex

Color SimpleEngine::ColorRightFront::get()

{

return Color::FromArgb(engine->GetColorRightFront());

}

//! Sets the color of the right front pyramid vertex

void SimpleEngine::ColorRightFront::set(Color color)

{

engine->SetColorRightFront(color.ToArgb());

}

//! Gets the color of the left front pyramid vertex

Color SimpleEngine::ColorLeftFront::get()

{

return Color::FromArgb(engine->GetColorLeftFront());

}

//! Sets the color of the left front pyramid vertex

void SimpleEngine::ColorLeftFront::set(Color color)

{

engine->SetColorLeftFront(color.ToArgb());

}

//! Gets the color of the back left pyramid vertex

Color SimpleEngine::ColorBackLeft::get()

{

return Color::FromArgb(engine->GetColorBackLeft());

}

//! Sets the color of the back left pyramid vertex

Creating a Managed Wrapper for SimpleEngine 37

void SimpleEngine::ColorBackLeft::set(Color color)

{

engine->SetColorBackLeft(color.ToArgb());

}

//! Gets the color of the back right pyramid vertex

Color SimpleEngine::ColorBackRight::get()

{

return Color::FromArgb(engine->GetColorBackRight());

}

//! Sets the color of the back right pyramid vertex

void SimpleEngine::ColorBackRight::set(Color color)

{

engine->SetColorBackRight(color.ToArgb());

}

//! Gets the color of the back buffer

Color SimpleEngine::ColorBackBuffer::get()

{

return Color::FromArgb(engine->GetColorBackBuffer());

}

//! Sets the color of the back buffer

void SimpleEngine::ColorBackBuffer::set(Color color)

{

engine->SetColorBackBuffer(color.ToArgb());

}

}

Consuming the Managed Wrapper
The managed wrapper implementation is finished and could be used “as-is,” but
doing so would result in messy code that probably will be hard to maintain and
reuse. We can take our wrapper one step further and wrap the managed
SimpleEngine wrapper into a UserControl that can be dragged onto a form. We are
going to avoid extra design-time functionality, because this would lead to problems
with device creation during form design. Instead, a Create() and Release() method
will be used to manage device initialization and release. In this way, the regular
designer support for a UserControl still exists, but we do not have any device-related
problems to work through. During device creation, an event handler is attached to

Bonus Chapter 2 ■ Building a Managed Wrapper with C++/CLI38

the idle event of the application to support “real-time” rendering, and I say that
loosely. Some managed Direct3D implementations use a timer or loop that calls
Application.DoEvents(), but these solutions are problematic for a variety of reasons.
Tying rendering into the idle event of the application seems to be the best approach
for now. Aside from the generated designer code, the following source code describes
the SimpleEngine UserControl.

/// <summary>Class that encapsulates the managed SimpleEngine

/// wrapper into a reusable control</summary>

public partial class SimpleEngineControl : UserControl

{

/// <summary>Reference to the SimpleEngine managed wrapper</summary>

private ManagedSimpleEngine.SimpleEngine simpleEngine = null;

/// <summary>Gets or sets the reference to an instance of the

/// PropertyGrid adapter class</summary>

public ManagedSimpleEngine.SimpleEngine EngineInterface

{

get { return simpleEngine; }

}

/// <summary>Constructor</summary>

public SimpleEngineControl()

{

InitializeComponent();

}

/// <summary>Destructor \ Finalizer</summary>

~SimpleEngineControl()

{

Release();

}

/// <summary>Creates an engine context and attaches

/// the necessary events</summary>

public void Create()

{

Release();

simpleEngine = new ManagedSimpleEngine.SimpleEngine();

simpleEngine.CreateContext(RenderPanel.Handle,

RenderPanel.Height,

RenderPanel.Width);

Consuming the Managed Wrapper 39

Application.Idle += new EventHandler(Application_Idle);

RenderPanel.BackColor = Color.Black;

}

/// <summary>Releases the current engine context and

/// resets the control</summary>

public void Release()

{

if (simpleEngine != null)

{

Application.Idle -= new EventHandler(Application_Idle);

simpleEngine.ReleaseContext();

simpleEngine = null;

RenderPanel.BackColor = SystemColors.GradientActiveCaption;

}

}

/// <summary>Event fired when the engine control is resized</summary>

/// <param name=”sender”>The sender of the event</param>

/// <param name=”e”>The event arguments</param>

private void RenderPanel_Resize(object sender, EventArgs e)

{

if (simpleEngine != null)

simpleEngine.ResizeContext(RenderPanel.Width, RenderPanel.Height);

}

/// <summary>Event fired when application is idle</summary>

/// <param name=”sender”>The sender of the event</param>

/// <param name=”e”>The event arguments</param>

void Application_Idle(object sender, EventArgs e)

{

if (simpleEngine != null)

simpleEngine.RenderContext();

}

/// <summary>Invoked when the control is supposed to paint</summary>

/// <param name=”e”>The arguments of the paint event</param>

protected override void OnPaint(PaintEventArgs e)

{

Application_Idle(this, e);

}

Bonus Chapter 2 ■ Building a Managed Wrapper with C++/CLI40

/// <summary>Invoked when the control is supposed to paint

/// the background</summary>

/// <param name=”e”>The arguments of the paint event</param>

protected override void OnPaintBackground(PaintEventArgs e)

{

Application_Idle(this, e);

}

}

Using our new control is very easy; drop it on a Form and resize the bounds accord-
ingly. Call the Create() method on the control instance to initialize the engine con-
text, and call the Release() method when you are ready to destroy the engine context.
We have exposed some properties of SimpleEngine with accompanying metadata
descriptions and category names, so we might as well hook a property grid up to the
engine context. The following source code shows example usage of the SimpleEngine
control and a PropertyGrid. In the following example, EngineContext is an instance of
the SimpleEngine UserControl, and EngineProperties is an instance of PropertyGrid.

public partial class MainForm : Form

{

/// <summary>Constructor</summary>

public MainForm()

{

InitializeComponent();

}

/// <summary>Event fired when the create context

/// button is clicked</summary>

/// <param name=”sender”>The sender of the event</param>

/// <param name=”e”>The event arguments</param>

private void CreateContextButton_Click(object sender, EventArgs e)

{

EngineContext.Create();

EngineProperties.SelectedObject = EngineContext.EngineInterface;

EngineProperties.Refresh();

}

/// <summary>Event fired when the release context

/// button is clicked</summary>

/// <param name=”sender”>The sender of the event</param>

/// <param name=”e”>The event arguments</param>

private void ReleaseContextButton_Click(object sender, EventArgs e)

{

41Consuming the Managed Wrapper

EngineProperties.SelectedObject = null;

EngineContext.Release();

}

}

Bonus Figure 2.2 shows the SimpleEngine control in action. Notice the PropertyGrid
that can change engine properties at runtime.

Conclusion
This chapter briefly introduced an overview of the C++/CLI language and com-
piler options, and discussed a few techniques to mix managed and unmanaged
code. This chapter does not come close to covering the entire language, and it
would be unrealistic to attempt such a goal. The language specification alone is
around 300 pages, not factoring in examples and context discussion. Instead, a
brief overview was presented that covered a few interesting aspects of the language,
later showing a managed wrapper around an unmanaged Direct3D “engine.”

Bonus Chapter 2 ■ Building a Managed Wrapper with C++/CLI42

Bonus Figure 2.2 Screenshot of the accompanying example and SimpleEngine control.

Hopefully, you will see the value in C++/CLI if you have to port or migrate your
existing legacy code over to the managed platform. Managed wrappers perform
and integrate much better than exposed COM interfaces, and provide less legacy
support and maintenance. Another great feature of managed wrappers is the abil-
ity to refactor some of your code. You can expose a different interface definition
than your legacy code exposes, and just wrap the logic accordingly.

C++/CLI is not for everyone, and if possible, you are much better off having no
unmanaged code in your application. C++/CLI isn’t always the “silver bullet” for
many of your interoperability concerns.

Conclusion 43

