
1

Distributed Computing
Using .NET Remoting

Bonus
Chapter 1

Light is the task when many share the toil.

Homer, The Iliad

Distributed computing is a model for solving computationally expensive problems
by handing out small units of work to a network of computers, where each unit is
solved and then combined back into the final computation. Distributed comput-
ing uses the resources of a large number of disparate computers connected to a
network, treated as a virtual cluster. The network can be the Internet, in which case
the appropriate term is grid computing, which is different from the traditional dis-
tributed computing approach because grid computing extends across administra-
tive domains. Grid computing is sometimes confused with clustered computing,
which is incorrect because grid computing is not restricted to a single administra-
tive domain.

There are many successful grid computing projects available over the Internet,
with perhaps the largest being the SETI@home project, which uses personal com-
puters to analyze data from the Arecibo radio telescope in the hope of identifying
signatures that indicate extraterrestrial intelligence. Currently, there are around
half a million personal computers delivering 1,000 CPU years a day, which makes
SETI@home the fastest special purpose computer in the world. There are many
other projects available, such as the search for the largest prime number, solving
protein folding, earthquake simulation, financial modeling, and weather modeling.

There is even talk that the Xbox 360 and PlayStation 3 may be able to support dis-
tributed computing, which would allow gamers to support projects like SETI@home
when they are not using their consoles.

At a lower scale than grid computing, distributed computing can also be harnessed
to solve computationally intensive problems for a game development studio over a
local network. Current hardware offers much more processing power than it did
a decade ago, but there is still a need to preprocess and store complex calculations
prior to running the game. Calculations like computing potential visibility sets
or calculating radiosity lightmaps for complex scenes are ideal candidates for pre-
processing. Even the offline calculations take a considerable amount of time, and
usually tie up the machine until the calculations are done.

Distributed computing can be used to manage the intermittent demands of these
large computational exercises, drastically decreasing the computation time by
spreading the work across multiple computers. Granted, moving complex calcula-
tions into a distributed environment is non-trivial, and must be done correctly.
Distributed radiosity, and distributed solutions in general, can be quite tricky to
implement correctly for a number of reasons. One reason is that all clients general-
ly need the complete data set for the entire scene, which can be a costly packet to
send to clients in certain environments. Of course, the algorithm itself must be
rewritten to accommodate units of isolation for each client, which can be extremely
difficult to develop and debug. You must also consider network performance, secu-
rity, and scalability. If your network cannot adequately support a distributed model,
you may, in fact, decrease your performance. The same concern goes along with the
computers you are using, although generally you can solve the issue of under-
performing computers by adding additional machines, which is fairly inexpensive.

The easiest type of calculation to distribute is a simple array of objects that can
each execute independently of one another. Another applicable situation, albeit a
little trickier, is a hierarchical algorithm, where you can pass a subset of the whole
computation tree to a client by sending in a parent node containing child nodes.
If implemented correctly, distributed computing can save significant hours of exe-
cution time, which will result in an increase in productivity.

This chapter covers further discussion of the usage and role of distributed com-
puting, and then a relatively simple solution is presented that attempts to provide
a framework upon which a distributed solution could be built and operated. The
solution employs the use of .NET Remoting to communicate between server and
clients. The solution is not overly complex, and it is missing functionality that
would be present in a robust and mature middleware product.

Bonus Chapter 1 ■ Distributed Computing Using .NET Remoting2

Investigating Scalability
In systems analysis and design, scalability indicates the ability of a system to
increase total throughput under an increased load and when hardware or software
resources are added. Scalability is extremely important when working with dis-
tributed environments, because it implies performance. A distributed environ-
ment whose performance improves after adding resources proportionally to the
capacity added is said to be scalable.

The concept of scalability can be measured in three categories:

■ The first category is load scalability, where it should be easy to expand
or contract the resource pool to accommodate heavier or lighter loads.
In terms of distributed computing, this generally refers to adding and
removing client machines from the environment. A distributed environ-
ment should be able to function normally, but with varying performance,
independently of the number of available clients. Even situations where no
clients are running should be considered, although it is quite obvious that
processing would never complete.

■ The second category is geographic scalability, where a scalable system
should be able to maintain usefulness and usability no matter how far apart
the resources are. Generally, game development studios would not employ
clients outside of their own network, so this category is somewhat meaningless
in this situation.

■ The third category is administrative scalability, where it should be easy to
use and manage a single distributed environment, regardless of how many
organizations share it.

There is typically a loss in performance when a distributed environment scales in
one or more of these categories. Therefore, it is important that the system itself be
as optimized and scalable as reasonably possible.

N o t e

It is far better to focus on hardware scalability than capacity. It is generally much cheaper to
improve performance by adding a new computer to the environment instead of performance tun-
ing the system or the calculations to handle increased load.

There are two directions in which a distributed system can scale. A distributed
system can scale vertically or up, which involves adding to or tweaking the code or

Investigating Scalability 3

adding more memory or faster hardware to an existing computer. A distributed
system can also scale horizontally or out, which involves adding new computers to
the distributed environment.

Fault Tolerance
Perhaps the biggest concern when implementing a distributed system is fault tol-
erance and reliability of data. You can never be guaranteed that all the jobs will
complete successfully, which can be caused by an exception in the calculation, a
packet lost during communication, or a service interruption with the network or
a computer on the network. Therefore, it is important to build a mechanism to
handle fault tolerance. This mechanism can work in a variety of ways, but there are
a couple of common situations that should be addressed by all mechanisms.

The first situation is when an exception occurs during processing as a result of the
calculation. How this situation is handled depends on the calculation being per-
formed and whether or not the unit of work can be restarted. The rule for this sit-
uation depends on implementation criteria for your system.

The next situation is when a computer on the network closes communication for
an unknown reason, typically when a crash occurs. A common solution is to assign
an estimated completion time for a job, and when a job has not completed by that
time, you send out a heartbeat packet that the computer in question must reply to.
If the packet is replied to, then the computer is still processing the job, and you can
reset the estimated completion time. If the packet is not replied to, you can cancel
the job and place it back into the pending jobs pool. Generally, distributed systems
use pull technology rather than push, so you should not have to keep track of any
particular computer. If the faulty computer restarts, it should be configured to
relaunch the client and start pulling jobs again.

Another situation is when a packet is sent to a computer and is lost in transmis-
sion. You can extend the solution for when a computer goes offline by having the
heartbeat packet reply with a status mentioning that it is still waiting for a job
(meaning that it never received the job to process), and resend the job to the com-
puter in question. You can go even further by having a confirmation packet that a
client sends to the server when it receives a complete job packet.

Another possible situation is when the entire network goes down. The answer to
this situation is generally straightforward, though. The easiest way is to cancel the
entire calculation, log the failure, and restart the calculation when the network is
back online.

Bonus Chapter 1 ■ Distributed Computing Using .NET Remoting4

The most important situation to consider is when the server itself crashes or goes
offline. Imagine if the calculation results from each client are stored in memory on
the server, and the server crashes at 97 percent. You would lose all that processing
time, having to restart the entire calculation all over. Therefore, it is important to
factor in a transaction system that persists completed jobs to a data store and
enough information that a restarted server could recorrelate the results into the
final result and restart any incomplete jobs if need be.

Managing Security
Security is not necessarily the largest concern when running lighting calculations in
a game development studio, but sometimes it can be when dealing with sensitive
data. If you are on an untrusted network and you are worried about job tampering,
it is important that you manage network security appropriately. Network security
is beyond the scope of this chapter, but you could consider implementing an
account system into the clients so that completed jobs are marked with the com-
puter identifier and the account of the session. This way, you can detect people who
are injecting data into the results of the calculations. If acceptable, you can just
stamp completed jobs with the Windows identity extracted from Active Directory.

Middleware Considerations
The solution provided in this chapter can be extended to build a custom solution,
but some studios just want to get something up and running in the shortest
amount of time possible. There are some middleware products available, many of
them free, which provide a flexible interface for application composition, and a
robust execution engine that has been thoroughly tested to account for fault toler-
ance, scalability, and performance.

If a middleware product appeals to you, then I suggest that you take a look at
Alchemi, which is a flexible and robust middleware product that provides a dis-
tributed computing framework at an enterprise level. Alchemi is built on the .NET
platform and makes use of .NET Remoting for job communication. Alchemi sup-
ports an object-oriented application programming model and a file-based job
model. Cross-platform support is also provided by a web service layer, which can
support the communication between other distributed systems. Alchemi also
offers the capability for dedicated and non-dedicated (voluntary) execution by
grid nodes. An excellent feature of Alchemi is that it is open-source, which means
that it is much easier to adopt this technology into your studio instead of dealing
with licensing issues.

Middleware Considerations 5

N o t e

For more information about Alchemi, please visit http://www.alchemi.net.

Sample Framework
We will start off by covering the definition of what a job is, shown by the follow-
ing interface. A job is a single unit of work and is contained within a job batch that
can have one to many jobs. A job batch allows us to send chunky calls to clients,
instead of doing it one job at a time (chatty calls), which causes a significant slow-
down from the increase in network traffic.

/// <summary>Generic interface to represent a unit of work</summary>

public interface IDistributedJob

{

/// <summary>Gets or sets the result of the job</summary>

object Result

{

get;

set;

}

/// <summary>Gets or sets the input data of the job</summary>

object InputData

{

get;

set;

}

/// <summary>Gets or sets the identifier for the associated batch</summary>

Guid BatchId

{

get;

set;

}

/// <summary>Gets or sets the identifier for the job</summary>

Guid JobId

{

get;

set;

}

Bonus Chapter 1 ■ Distributed Computing Using .NET Remoting6

/// <summary>Gets or sets the correlation id used for reordering</summary>

long CorrelationId

{

get;

set;

}

/// <summary>Gets or sets the time the job started processing</summary>

DateTime StartTime

{

get;

set;

}

/// <summary>Gets or sets the time the job finished processing</summary>

DateTime FinishTime

{

get;

set;

}

}

The next interface to cover is the job batch, which is used to group a collection of
jobs that will be sent to a client as a chunky call. Batches allow for correlation, in
case jobs need to be reordered into a specific order based on an index or some other
attribute, and assembly, which can be used to build a batch result if applicable.

/// <summary>Generic interface to represent a group of jobs</summary>

public interface IDistributedJobBatch

{

/// <summary>Gets or sets the result for this batch of jobs</summary>

object Result

{

get;

set;

}

/// <summary>Gets or sets the input data for this batch of jobs</summary>

object InputData

{

get;

set;

}

Sample Framework 7

/// <summary>Gets or sets the identifier of this batch</summary>

Guid BatchId

{

get;

set;

}

/// <summary>Gets or sets the array of jobs for this batch</summary>

IDistributedJob[] Jobs

{

get;

set;

}

/// <summary>This method can be used to reorder the jobs array

/// before assembly. This can be based on the correlation id of

/// the jobs if applicable.</summary>

void Correlate();

/// <summary>This method can be used to build the result from

/// this batch if applicable. Some systems will only submit one

/// job per batch or not care about the results of a batch.</summary>

void Assemble();

}

The next interface is for distributed servers. Servers can sign out job batches, sign
in job batches, and dismiss job batches.

/// <summary>Generic interface that servers must implement</summary>

public interface IDistributedJobServer

{

/// <summary>Signs out an available batch from the

/// server to process</summary>

/// <returns>The job batch to process</returns>

IDistributedJobBatch SignOut();

/// <summary>Signs in a completed batch back into the server</summary>

/// <param name=”batch”>The completed job batch to

/// send back to the server</param>

void SignIn(IDistributedJobBatch batch);

/// <summary>Dismisses a job batch so the server can make

/// it available again</summary>

Bonus Chapter 1 ■ Distributed Computing Using .NET Remoting8

/// <param name=”batch”>The job batch to dismiss</param>

void Dismiss(IDistributedJobBatch batch);

}

There is a lot of common functionality that will be present between all imple-
mentations of the distributed server using the supplied framework. The following
code implements the base class that a distributed server inherits from. This base
class handles the initialization of Remoting, keeping track of the available and
unavailable job batches, and sets the lifetime of the Remoting proxy to infinite
(until the proxy is explicitly released or the application is quit).

/// <summary>Base class that all distributed servers inherit from</summary>

public abstract class DistributedJobServer : MarshalByRefObject, IDistributedJobServer

{

/// <summary>Remoting channel that the server will

/// communicate with clients over</summary>

private IChannel channel;

/// <summary>A list of available job batches ready for processing</summary>

protected readonly List<IDistributedJobBatch> availableBatches

= new List<IDistributedJobBatch>();

/// <summary>A list of unavailable job batches

/// currently being processed</summary>

protected readonly List<IDistributedJobBatch> unavailableBatches

= new List<IDistributedJobBatch>();

/// <summary>Gets the list of available job batches

/// ready for processing</summary>

public List<IDistributedJobBatch> AvailableBatches

{

get { return availableBatches; }

}

/// <summary>Adds a job batch to the available batches list</summary>

/// <param name=”jobBatch”>The job batch to list</param>

public void EnqueueJobBatch(IDistributedJobBatch jobBatch)

{

availableBatches.Add(jobBatch);

}

/// <summary>Loads settings from the configuration file

/// and creates the remoted proxy server</summary>

Sample Framework 9

/// <param name=”configPath”>The file system path to the

/// configuration file</param>

/// <returns>True if successful; false otherwise</returns>

public bool Publish(string configPath)

{

try

{

DistributedJobServerConfig config

= new DistributedJobServerConfig();

if (!config.Load(configPath))

{

return false;

}

IDictionary bindings = new Hashtable();

bindings[“port”] = config[“port”].ToString();

bindings[“name”] = string.Empty;

string extension = string.Empty;

switch (config[“protocol”].ToString())

{

case “http”:

{

channel = new HttpChannel(bindings, null, null);

extension = “.soap”;

break;

}

case “tcp”:

{

channel = new TcpChannel(bindings, null, null);

extension = string.Empty;

break;

}

}

ChannelServices.RegisterChannel(channel);

RemotingServices.Marshal(this, config[“proxy”].ToString());

Bonus Chapter 1 ■ Distributed Computing Using .NET Remoting10

return true;

}

catch (Exception)

{

return false;

}

}

/// <summary>Releases the remoting channel and remoted proxy</summary>

public void Release()

{

RemotingServices.Disconnect(this);

ChannelServices.UnregisterChannel(channel);

}

/// <summary>Signs out an available batch from the

/// server to process</summary>

/// <returns>The job batch to process</returns>

public abstract IDistributedJobBatch SignOut();

/// <summary>Signs in a completed batch back into the server</summary>

/// <param name=”batch”>The completed job batch

/// to send back to the server</param>

public abstract void SignIn(IDistributedJobBatch batch);

/// <summary>Dismisses a job batch so the server can

/// make it available again</summary>

/// <param name=”batch”>The job batch to dismiss</param>

public abstract void Dismiss(IDistributedJobBatch batch);

/// <summary>Informs remoting that we will manage the

/// lifetime of the proxy (infinite lifetime)</summary>

/// <returns>Null to signify infinite lifetime until we close</returns>

public override object InitializeLifetimeService()

{

return null;

}

}

Like the base class for distributed servers, the following code implements the base
class that a distributed client inherits from. This base class handles the initializa-
tion of Remoting and retrieval of the remoted server proxy.

Sample Framework 11

/// <summary>Base class that all distributed clients inherit from</summary>

public abstract class DistributedJobClient

{

/// <summary>The remoted proxy reference to the distributed server</summary>

private IDistributedJobServer proxy;

/// <summary>The remoting channel to communicate with the server</summary>

private IChannel channel;

/// <summary>Gets the remoted proxy reference to

/// the distributed server</summary>

public IDistributedJobServer Proxy

{

get { return proxy; }

/// <summary>Loads connection information from the

/// config file and creates the remoted proxy reference</summary>

/// <param name=”configPath”>The file system path to

/// the configuration file</param>

/// <returns>True if successful; false otherwise</returns>

public bool Subscribe(string configPath)

{

try

{

DistributedJobClientConfig config = new DistributedJobClientConfig();

if (!config.Load(configPath))

{

return false;

}

IDictionary bindings = new Hashtable();

bindings[“name”] = string.Empty;

string extension = string.Empty;

switch (config[“protocol”].ToString())

{

case “http”:

{

channel = new HttpChannel(bindings, null, null);

Bonus Chapter 1 ■ Distributed Computing Using .NET Remoting12

extension = “.soap”;

break;

}

case “tcp”:

{

channel = new TcpChannel(bindings, null, null);

extension = string.Empty;

break;

}

}

ChannelServices.RegisterChannel(channel);

string proxyAddress = String.Format(“{0}://{1}:{2}/{3}{4}”,

config[“protocol”],

config[“address”],

config[“port”],

config[“proxy”],

extension);

proxy = Activator.GetObject(typeof(IDistributedJobServer),

proxyAddress) as IDistributedJobServer;

return true;

}

catch (Exception)

{

return false;

}

}

/// <summary>Unregisters the proxy and the remoting channel</summary>

public void Unsubscribe()

{

ChannelServices.UnregisterChannel(channel);

}

}

The example provided with the framework requires an implemented version of all
the interfaces. The following code describes the example implementation of the
job interface; the implementation is extremely simple.

Sample Framework 13

/// <summary>Example implementation of the IDistributedJob interface</summary>

[Serializable]

public class ExampleJob : IDistributedJob

{

/// <summary>The result of the job</summary>

private object result;

/// <summary>The input data of the job</summary>

private object inputData;

/// <summary>The time the job started processing</summary>

private DateTime startTime;

/// <summary>The time the job finished processing</summary>

private DateTime finishTime;

/// <summary>The identifier for the associated batch</summary>

private Guid batchId;

/// <summary>The identifier for the job</summary>

private Guid jobId;

/// <summary>The correlation id used for reordering</summary>

private long correlationId;

/// <summary>Gets or sets the result of the job</summary>

public object Result

{

get { return result; }

set { result = value; }

}

/// <summary>Gets or sets the input data of the job</summary>

public object InputData

{

get { return inputData; }

set { inputData = value; }

}

/// <summary>Gets or sets the time the job started processing</summary>

public DateTime StartTime

{

Bonus Chapter 1 ■ Distributed Computing Using .NET Remoting14

get { return startTime; }

set { startTime = value; }

}

/// <summary>Gets or sets the time the job finished processing</summary>

public DateTime FinishTime

{

get { return finishTime; }

set { finishTime = value; }

}

/// <summary>Gets or sets the identifier for the associated batch</summary>

public Guid BatchId

{

get { return batchId; }

set { batchId = value; }

}

/// <summary>Gets or sets the identifier for the job</summary>

public Guid JobId

{

get { return jobId; }

set { jobId = value; }

}

/// <summary>Gets or sets the correlation id used for reordering</summary>

public long CorrelationId

{

get { return correlationId; }

set { correlationId = value; }

}

}

The following code describes the example implementation of the job batch inter-
face. Correlation and assembly are not used in this example.

/// <summary>Example implementation of the IDistributedJobBatch interface</summary>

[Serializable]

public class ExampleJobBatch : IDistributedJobBatch

{

/// <summary>The identifier of this batch</summary>

private Guid batchId;

Sample Framework 15

/// <summary>The array of jobs for this batch</summary>

private IDistributedJob[] jobs = new IDistributedJob[0] { };

/// <summary>The result for this batch of jobs</summary>

private object result;

/// <summary>The input data for this batch of jobs</summary>

private object inputData;

/// <summary>Gets or sets the identifier of this batch</summary>

public Guid BatchId

{

get { return batchId; }

set { batchId = value; }

}

/// <summary>Gets or sets the array of jobs for this batch</summary>

public IDistributedJob[] Jobs

{

get { return jobs; }

set { jobs = value; }

}

/// <summary>Gets or sets the result for this batch of jobs</summary>

public object Result

{

get { return result; }

set { result = value; }

}

/// <summary>Gets or sets the input data for this batch of jobs</summary>

public object InputData

{

get { return inputData; }

set { inputData = value; }

}

/// <summary>This method can be used to build the result

/// from this batch if applicable.

/// Some systems will only submit one job per batch or not

/// care about the results of a batch.</summary>

public void Assemble()

Bonus Chapter 1 ■ Distributed Computing Using .NET Remoting16

{

// Not used in this example

}

/// <summary>This method can be used to reorder the

/// jobs array before assembly. This can be based on

/// the correlation id of the jobs if applicable.</summary>

public void Correlate()

{

// Not used in this example

}

}

The example server provided with the sample framework has two events that send
update notifications to the user interface to report on the completed and pending
jobs. The following class describes the event arguments that are passed into the
events.

/// <summary>Event arguments for user interface updates</summary>

public class UpdateJobsEventArgs : EventArgs

{

/// <summary>The associated message to display</summary>

private string message = string.Empty;

/// <summary>Gets or sets the associated message to display</summary>

public string Message

{

get { return message; }

set { message = value; }

}

/// <summary>Constructor</summary>

/// <param name=”message”>The associated message to display</param>

public UpdateJobsEventArgs(string message)

{

this.message = message;

}

}

The following code describes the example implementation of the distributed server
that inherits from the base server class.

using DistributedJobSystem.Proxies;

/// <summary>Example implementation of the distributed server</summary>

Sample Framework 17

public class TestServer : DistributedJobServer

{

/// <summary>Event fired when the pending jobs label

/// requires an update</summary>

public event EventHandler<UpdateJobsEventArgs> UpdatePendingJobs;

/// <summary>Event fired when the complete jobs label

/// requires an update</summary>

public event EventHandler<UpdateJobsEventArgs> UpdateCompletedJobs;

/// <summary>Signs out an available batch from the server

/// to process</summary>

/// <returns>The job batch to process</returns>

public override IDistributedJobBatch SignOut()

{

lock (availableBatches)

{

if (availableBatches.Count > 0)

{

IDistributedJobBatch batch = availableBatches[0];

availableBatches.RemoveAt(0);

unavailableBatches.Add(batch);

lock (MainForm.MainFormInstance.PendingJobs)

{

string countText

= MainForm.MainFormInstance.PendingJobs.Text;

int count = Convert.ToInt32(countText) - 1;

if (UpdatePendingJobs != null)

UpdatePendingJobs(this,

new UpdateJobsEventArgs(count.ToString()));

}

return batch;

}

else

return null;

}

}

Bonus Chapter 1 ■ Distributed Computing Using .NET Remoting18

/// <summary>Signs in a completed batch back into the server</summary>

/// <param name=”batch”>The completed job batch to

/// send back to the server</param>

public override void SignIn(IDistributedJobBatch batch)

{

lock (unavailableBatches)

{

for (int batchIndex = 0;

batchIndex < unavailableBatches.Count;

batchIndex++)

{

if (batch.BatchId == unavailableBatches[batchIndex].BatchId)

{

unavailableBatches.RemoveAt(batchIndex);

break;

}

}

lock (MainForm.MainFormInstance.CompletedJobs)

{

// This could be improved

string countText = MainForm.MainFormInstance.CompletedJobs.Text;

int count = Convert.ToInt32(countText) + 1;

if (UpdateCompletedJobs != null)

UpdateCompletedJobs(this,

new UpdateJobsEventArgs(count.ToString()));

}

Application.DoEvents();

}

}

/// <summary>Dismisses a job batch so the server

/// can make it available again</summary>

/// <param name=”batch”>The job batch to dismiss</param>

public override void Dismiss(IDistributedJobBatch batch)

{

IDistributedJobBatch dismissedBatch = null;

lock (unavailableBatches)

{

Sample Framework 19

for (int batchIndex = 0;

batchIndex < unavailableBatches.Count;

batchIndex++)

{

if (batch.BatchId == unavailableBatches[batchIndex].BatchId)

{

dismissedBatch = unavailableBatches[batchIndex];

unavailableBatches.RemoveAt(batchIndex);

break;

}

}

}

if (dismissedBatch != null)

{

availableBatches.Add(dismissedBatch);

// This could be improved

string countText = MainForm.MainFormInstance.PendingJobs.Text

int count = Convert.ToInt32(countText) + 1;

if (UpdatePendingJobs != null)

UpdatePendingJobs(this,

new UpdateJobsEventArgs(count.ToString()));

}

}

}

The following code snippet describes the publishing logic for the example server
user interface. Basically, 100,000 job batches, each with 10 jobs, are created and
made available for clients to process. This example does not really do anything
with results or input data, but the framework definitely supports both properties
because they are somewhat important in a real solution!

private void PublishButton_Click(object sender, EventArgs e)

{

PublishButton.Enabled = false;

TestServer server = new TestServer();

server.UpdatePendingJobs +=

new EventHandler<UpdateJobsEventArgs>(server_UpdatePendingJobs);

server.UpdateCompletedJobs +=

Bonus Chapter 1 ■ Distributed Computing Using .NET Remoting20

new EventHandler<UpdateJobsEventArgs>(server_UpdateCompletedJobs);

if (!server.Publish(“..\\..\\ServerConfig.xml”))

throw new Exception(“Could not register”);

for (int batchIndex = 0; batchIndex < 100000; batchIndex++)

{

ExampleJobBatch jobBatch = new ExampleJobBatch();

jobBatch.BatchId = Guid.NewGuid();

jobBatch.Result = null;

jobBatch.InputData = null;

List<IDistributedJob> jobList = new List<IDistributedJob>();

for (int jobIndex = 0; jobIndex < 10; jobIndex++)

{

ExampleJob job = new ExampleJob();

job.BatchId = jobBatch.BatchId;

job.JobId = Guid.NewGuid();

job.CorrelationId = jobIndex;

job.StartTime = DateTime.Now;

job.Result = null;

job.InputData = null;

jobList.Add(job);

}

jobBatch.Jobs = jobList.ToArray();

server.EnqueueJobBatch(jobBatch);

}

PendingJobs.Text = server.AvailableBatches.Count.ToString();

MessageBox.Show(“Done Startup”);

}

The following code shows the example implementation of the distributed client that
inherits from the base client class. Nothing really special here, but the implemen-
tation is shown to fill in the blanks. This class relies on the underlying functionality
already implemented in the base class.

Sample Framework 21

/// <summary>Example implementation of the distributed client</summary>

public class TestClient : DistributedJobClient

{

// No specialized overrides needed for this example

}

The following code snippet shows the processing logic for the client user interface.
This code signs out and processes jobs while they are available from the server. You
can cancel and resume processing at any time as well. The example does not really
process much on the jobs, but instead pauses for a little bit to simulate a real solu-
tion.

private void ProcessButton_Click(object sender, EventArgs e)

{

try

{

ProcessButton.Enabled = false;

CancelProcessButton.Enabled = true;

stopped = false;

int count = 0;

TestClient client = new TestClient();

client.Subscribe(“..\\..\\ClientConfig.xml”);

ExampleJobBatch jobBatch = null;

while ((jobBatch = (ExampleJobBatch)client.Proxy.SignOut()) != null)

{

// Do stuff with jobBatch here

System.Threading.Thread.Sleep(1);

count++;

TreeNode batchNode = new TreeNode(“Batch# “ +

jobBatch.BatchId.ToString());

foreach (ExampleJob job in jobBatch.Jobs)

{

// Do stuff with each job here

TreeNode jobNode = new TreeNode(“Job# “ +

job.CorrelationId.ToString());

Bonus Chapter 1 ■ Distributed Computing Using .NET Remoting22

batchNode.Nodes.Add(jobNode);

}

treeView1.Nodes[0].Nodes.Add(batchNode);

treeView1.Nodes[0].Text = “Completed Batches - “ +

count.ToString();

Application.DoEvents();

try

{

Debug.Assert(jobBatch != null);

client.Proxy.SignIn(jobBatch);

}

catch (Exception exception)

{

MessageBox.Show(exception.ToString());

}

if (stopped)

{

break;

}

}

client.Unsubscribe();

ProcessButton.Enabled = true;

CancelProcessButton.Enabled = false;

}

catch (Exception exception)

{

MessageBox.Show(exception.ToString());

}

}

The user interface for the distributed server example is shown in Figure 29.1.

The user interface for the distributed client example is shown in Figure 29.2.

Sample Framework 23

Bonus Chapter 1 ■ Distributed Computing Using .NET Remoting24

Figure 29.1 Screenshot of the distributed server example.

Figure 29.2 Screenshot of the distributed client example.

Conclusion
This chapter started off by discussing what distributed computing is, and its role
in the game development industry. After which, some design considerations about
scalability, fault tolerance, and security were covered that are important if you are
planning on building a custom solution. Alchemi was then introduced as a viable
.NET-based middleware solution, if that is the road you wish to take. Finally, a
simple framework using .NET Remoting was presented that could be extended to
support a custom solution. The presented solution, although fairly flexible, is still
missing some important components such as fault tolerance and much better
abstraction. It is merely presented as a building block with which you can build
your own solution. Rather than a Windows Forms project for both the client and
server, it would be recommended to use a Windows service for each process.

N o t e

You will get much more performance out of a distributed system that sends large jobs to clients for
processing, as opposed to a whole bunch of small jobs that finish quickly. You need to account for
a small drop in performance with the network activity. Having large distributed jobs easily coun-
teracts the small network performance costs.

The idea of distributed computing has been around for a number of years,
although it is starting to exponentially pick up speed and adoption. A poorly
designed solution can lead to enormous development and support headaches,
though a properly designed solution can lead to significant cost and time savings,
a huge gain for any game development studio.

Conclusion 25

